

d.o.o. «GasTeh», Indija - SRBIJA 22320 IN\IJA, Kralja Petra I b.b. www.gasteh.com Представительство на территории РФ и ТС: OOO «ЭСГТ» г. Саратов тел. (8452) 24-80-40, eltonsg@mail.ru

ПРОИЗВОДСТВО ГАЗОВОГО И ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ

149

((

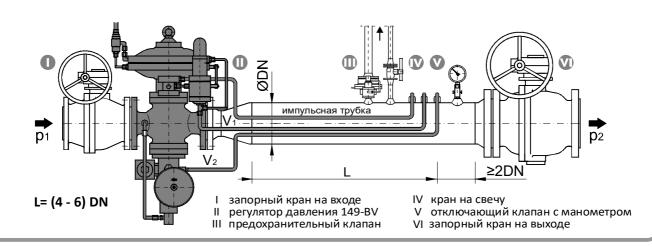
ПИЛОТНЫЕ РЕГУЛЯТОРЫ ВЫСОКОГО ДАВЛЕНИЯ БЕЗ И С ПРЕДОХРАНИТЕЛЬНО-ЗАПОРНЫМ КЛАПАНОМ

ПАРАМЕТРЫ

Входное давление: P_1 = max 10 МПа Выходное давление: P_2 = 0,1 ÷ 4,0 МПа

Типоразмеры: DN25 ÷ DN150 Исполнения: ANSI 300/600

Климатическое исполнение: У2 и ХЛ2 (до -60°С).


ПРИМЕНЕНИЕ

ПРИРОДНЫЙ ГАЗ, ПРОПАН-БУТАН, ВОЗДУХ, АЗОТ И ТЕХ. ГАЗЫ

МОНТАЖ И ЖАТНОМ

Регулятор давления тип 149 представляет собой регулятор непрямого действия с управляющим регуляторомпилотом и обеспечивает стабильное выходное давление Р₂ класса точности RG независимо от изменения входного давления Р₁ и расхода газа. Импульсные трубки V подводят газ (давлением Р₂) до пилота, предпилота и регулятора, которые взаимодействуя обеспечивают заданное выходное давление.

Регулятор 149-BV оснащен встроенным ПЗК (предохранительно-запорный клапан), срабатывающим как от превышения, так и понижения выходного давления Р₂. Регулятор должен работать на очищенном газе. Фильтрация перед регулятором для природного газа не хуже 50 мкм. Стандартно регулятор монтируется при потоке газа слева-направо. Монтаж регулятора производится в вертикальном положении.

ОПИСАНИЕ РАБОТЫ

Регулятор давления состоит из:

- -регулятора 149;
- -П3K;
- -предпилота;
- -пилота;
- -дросселя.

Все составные части регулятора соединены в единый механизм импульсными трубками.

В начальной стадии (когда в газопроводе нет газа) регулятор не настроен и находится в закрытом положении (затвор клапана 3 под действием пружины 6 прижат к седлу). Тарелка ПЗК 9 отведена от седла и открыт доступ газа к затвору клапана. Пилот находится в открытом положении. Когда газ подан, он проходит по корпусу 1, открывает затвор клапана 3 и поступает по импульсному трубопроводу V_1 в предпилот по патрубку 13. Для регуляторов с входным давлением свыше 2,5 МПа перед пилотом устанавливается предпилот, который снабжает пилот рабочим давлением выше выходного давления P_2 примерно на 0,2 МПа, что обеспечивается калиброванной пружиной предпилота и дополнительная настройка предпилота не требуется. Из предпилота газ поступает в пилот.

Из пилота газ поступает в исполнительный мембранный механизм, который, перемещаясь

под действием перепада давления между верхней и нижней камерами мембранного механизма и пружины вследствие изменения входного давления P_1 или расхода газа, перемещает затвор клапана, чем изменяет проходное сечение клапана и обеспечивает заданное выходное давление P_2 . Для более плавного регулирования выходного давления P_2 необходимо изменить (настроить) проходное сечение дросселя путем вращения иглы дросселя и зафиксировать его контргайкой. Дроссель устроен таким образом, что даже при полностью завинченной игле остается некоторое проходное сечение для протока газа между нижней и верхней камерами мембранного механизма.

Настройка регулятора на необходимое выходное давление Р₂ производится регулирующим винтом пилота, который затем фиксируется контргайкой и закрывается прозрачным колпачком.

В случае порыва мембраны 5 и отказа в работе регулятора давления, пружина 6 перемещает мембранный механизм и затвор клапана 3 перекрывает проходное сечение седла клапана (газовый поток) регулятор закрыт. Для подогрева импульсного газа (при необходимости) в предпилоте предусмотрены резьбовые отверстия для подвода отвода горячей воды 90/70°С. При нормальной работе регулятора обычно обогрев не требуется.

Подробное описание конструкции, работы, настройки и обслуживания регулятора и его составных частей приведено в руководстве по эксплуатации.

ОПИСАНИЕ РАБОТЫ ПЗК

Газ по ипмпульсной трубке под выходным давлением P_2 подается на пилот ПЗК, который является блокирующим механизмом ПЗК. При повышении выходного давления P_2 сверх допустимого предела, давление на мембрану (а) растет и преодолевает усилие пружины (b), что приводит к смещению штока (c) пилота ПЗК, в результате этого толкатель (d) смещается и давит на шестерню (e). При повороте шестерни (e), стопорные шарики (f) входят в паз и шток (g) под действием пружины толкает затвор ПЗК (h) на седло и отсекает подачу газа.

При понижении выходного давления Р₂ ниже допустимого предела, давление мембраны (а) на шток (с) пилота ПЗК растет за счет усилия пружины (i), что приводит к смещению штока (с) пилота ПЗК, в результате этого толкатель (d) смещается и давит на шестерню (е). При повороте шестерни (е), стопорные шарики (f) входят в паз и шток (g) под действием пружины толкает затвор ПЗК (h) на седло и отсекает подачу газа.

Деблокировка ПЗК производится только в ручную (после выявления причин срабатывания ПЗК и их устранения) следующим образом:

- закрыть запорный клапан на входе и на выходе линии редуцирования;
- немного повернуть штурвал взвода ПЗК против часовой стрелки для выравнивания давления, после чего повернуть штурвал взвода ПЗК до конца (шток ПЗК должен зафиксироваться);
- медленно открыть кран на входе линии редуцирования.

MA	ГЕРИАЛЫ							
Поз.	НАИМЕНОВАНИЕ	5.	Мембран					
РЕГУЛЯТОР ДАВЛЕНИЯ			Пружина					
1. Корпус реуглятора			б. Пружина г. Корпус мембраны верхний					
2.	Седло	8.	Корпус мембраны нижний	Разрез С-С				
3.	Затвор	9.	Штуцер предпилота					
4.	Шток	10.	Цилиндр					
	(1) (2) (3) (4) (6)	<u>3</u>) (5 7 10 8	Подогрев предпилота водой 90/70 °C				
1 2 3 4 6 5 7 10 8 пилот регулятора импульсная трубка V предпилот мембранный механизм 9 предпилот								
	B		↓B ↓					

d

Пилот ПЗК

напралвение взвода ПЗК

h

Разрез В-В (вариант I)

a c

Разрез В-В (вариант II)

ПЗК

Разрез А-А

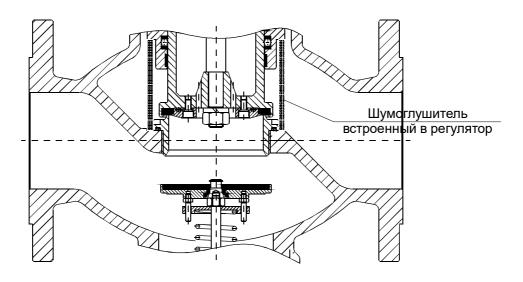
штурвал

ПРОПУСКНАЯ СПОСОБНОСТЬ

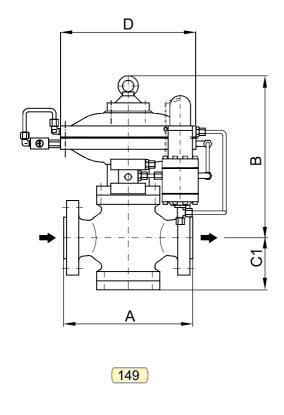
Расчет пропускной способности и подбор условного диаметра регулятора осуществляется заводом изготовителем на основании предоставленных в опросном листе данных с учетом значения перепада давления на входе и выходе регулятора, наличия встроенного ПЗК и т. д.

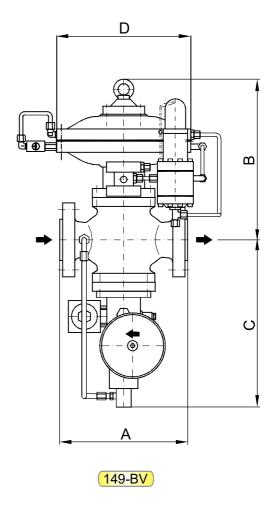
Максимальная скорость потока газа на входе в регулятор должна быть 50-60 м/с, чтобы обеспечить нормативные требования к допустимой скорости на входе в ПЗК. В седле регулятора скорость потока газа не должна превышать 180 м/с.

КG-КОЭФФИЦИЕНТ ПРОПУСКНОЙ СПОСОБНОСТИ


DN регулятора	KG
DN25	420
DN40	1120
DN50	1800
DN65	2500
DN80	4700
DN100	7900
DN150	14300

КЛАССЫ ТОЧНОСТИ


DN	P ₂ (МПа)	RG	ZG
05.450	1,0÷1,2	2,5	5
25÷150	1,2÷4,0	1,5	2,5


ВСТРОЕННЫЙ ШУМОГЛУШИТЕЛЬ

- шумоглушение до 10 дБ (макс. 12 дБ);
- устанавливается на регуляторы тип 149;
- простота установки;
- простота обслуживания;
- при небольшом шуме достаточно встроенного шумоглушителя без установки внешнего шумоглушителя Тип 450.

СНИЖЕНИЕ ШУМА С ПРИМЕНЕНИЕМ ВСТРОЕННОГО ШУМОГЛУШИТЕЛЯ

РАЗМЕРЫ

разме	ер	DN	25	40	50	65	80	100	150
	(мм)	ANSI300	197	235	267	292	317	368	473
Α		ANSI600	210	251	286	311	337	394	508
		ANSI300/600*	160	200	230	290	310	350	450
В		все классы	280	300	335	350	390	430	540
С			325	330	345	355	375	385	560
C ₁			95	110	115	125	150	165	225
D			250	300	300	300	415	415	500

^{*-} этот размер используется при замене уже существующего регулятора